Course Title: DESIGN OF PRE STRESSED CONCRETE ELEMENTS As per Choice Based Credit System (CBCS) scheme]

SEMESTER: VIII				
Subject Code	17CV82	IA Marks	40	
Number of Lecture Hours/Week	04	Exam Marks	60	
Total Number of Lecture Hours	50	Exam Hours	03	
CREDITS -04		Total Marks- 10	Total Marks- 100	

Course objectives: This course will enable students to learn Design of Pre Stressed Concrete Elements

Module -1

Introduction and Analysis of Members: Concept of Prestressing - Types of Prestressing - Advantages - Limitations –Prestressing systems - Anchoring devices - Materials - Mechanical Properties of high strength concrete - high strength steel - Stress-Strain curve for High strength concrete.

Analysis of members at transfer - Stress concept - Comparison of behavior of reinforced concrete - prestressed concrete - Force concept - Load balancing concept - Kern point - Pressure line.

Module -2

Losses in Prestress: Loss of Prestress due to Elastic shortening, Friction, Anchorage slip, Creep of concrete, Shrinkage of concrete and Relaxation of steel - Total Loss. Deflection and Crack Width Calculations of Deflection due to gravity loads - Deflection due to prestressing force -Total deflection - Limits of deflection - Limits of span-to-

Module -3

Design of Sections for Flexure: Analysis of members at ultimate strength - Preliminary Design - Final Design for Type 1members

Module -4

Design for Shear: Analysis for shear - Components of shear resistance - Modes of Failure - Limit State of collapse for shear - Design of transverse reinforcement.

Module -5

Composite Sections: Types of composite construction - Analysis of composite sections - Deflection –Flexural and shear strength of composite sections.

L1,L2,L3

L1,L2,L3

Course outcomes: After studying this course, students will be able to:

effective depth ratio -Calculation of Crack Width - Limits of crack width.

- Understand the requirement of PSC members for present scenario.
- Analyse the stresses encountered in PSC element during transfer and at working.
- Understand the effectiveness of the design of PSC after studying losses
- Capable of analyzing the PSC element and finding its efficiency.
- Design PSC beam for different requirements.

L1,L2

L1,L2

L1,L2,L3